Publications 2020

Figueroa-Lozano, S. et al., 2020. Inhibitory effects of dietary N-glycans from bovine lactoferrin on toll-like receptor 8; Comparing efficacy with chloroquine. Frontiers in Immunology, 12 5 (11). DOI 10.3389/fimmu.2020.00790

Figueroa-Lozano, S. et al., 2020. The impact of oligosaccharide content, glycosidic linkages and lactose content of galacto-oligosaccharides (GOS) on the expression of mucus-related genes in goblet cells. Food and Function, 1 4, 11(4), pp. 3506-3515. DOI 10.1039/d0fo00064g

Gangoiti, J. et al., 2020. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Critical Reviews in Food Science and Nutrition, 2 1, 60(1), pp. 123-146. DOI 10.1080/10408398.2018.1516621

Kittibunchakul, S. et al., 2020. Structural comparison of different galacto-oligosaccharide mixtures formed by β-galactosidases from lactic acid bacteria and bifidobacteria. Journal of Agricultural and Food Chemistry, 15 4, 68(15), pp. 4437-4446. DOI 10.1021/acs.jafc.9b08156

Li, X. et al., 2020. Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydrate Polymers, Volume 249, p. 116818. DOI 10.1016/j.carbpol.2020.116818

te Poele, E. et al., 2020. Development of slowly digestible starch derived alpha-glucans with 4,6-α-glucanotransferase and branching sucrase enzymes. Journal of Agricultural and Food Chemistry, 21 5.p. acs.jafc.0c01465. DOI 10.1021/acs.jafc.0c01465

Valk-Weeber, R., Eshuis-de Ruiter, T., Dijkhuizen, L. & van Leeuwen, S., 2020. Dynamic temporal variations in bovine lactoferrin glycan structures. J. Agric. Food Chem., 68(2), pp. 549-560. DOI 10.1021/acs.jafc.9b06762

Valk-Weeber, R. L. et al., 2020. In depth analysis of the contribution of specific glycoproteins to the overall bovine whey N-linked glycoprofile. J. Agric and Food Chem., 21 5.p. acs.jafc.0c00959. DOI 10.1021/acs.jafc.0c00959

Valk-Weeber, R. L., Eshuis-de Ruiter, T., Dijkhuizen, L. & van Leeuwen, S. S., 2020. Quantitative analysis of bovine whey glycoproteins using the overall N-linked whey glycoprofile. International Dairy Journal, Volume 110, p. 104814. DOI 10.1016/j.idairyj.2020.104814

Publications 2019

Böger, M. et al., 2019. Structural and functional characterization of a family GH53 β-1,4-galactanase from bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. Journal of Structural Biology, 1 1, 205(1), pp. 1-10. DOI 10.1016/j.jsb.2018.12.002

Böger, M., van Leeuwen, S., Lammerts van Bueren, A. & Dijkhuizen L., 2019. Structural identity of galactooligosaccharide molecules selectively utilized by single cultures of probiotic bacterial strains. J. Agric. Food Chem., 67(50), p. 13969–13977. DOI 10.1021/acs.jafc.9b05968

Devlamynck, T. et al., 2019. Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile. Food Chemistry, 30 1, Volume 272, pp. 653-662. DOI 10.1016/j.foodchem.2018.08.025

Pham, H. T., Boger, M. C., Dijkhuizen, L. & van Leeuwen, S. S., 2019. Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Applied Microbiology and Biotechnology, 18 1, 103(2), pp. 707-718. DOI 10.1007/s00253-018-9473-8

Pham, H. T., Ten Kate, G. A., Dijkhuizen, L. & Van Leeuwen, S. S., 2019. Synthesis and characterization of sialylated lactose- and lactulose-derived oligosaccharides by Trypanosoma cruzi trans-sialidase. Journal of Agricultural and Food Chemistry, 27 3, 67(12), pp. 3469-3479. DOI 10.1021/acs.jafc.8b06974

Valk-Weeber, R. L., Dijkhuizen, L. & van Leeuwen, S. S., 2019. Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydrate Research, 1 6, Volume 479, pp. 13-22. DOI 10.1016/j.carres.2019.04.011

Publications 2018

Boger, M. C. L., Lammerts van Bueren, A. & Dijkhuizen, L., 2018. Cross-feeding among probiotic bacterial strains on prebiotic inulin involves the extracellular exo-inulinase of Lactobacillus paracasei strain W20. Applied and Environmental Microbiology, 1 11, 84(21), pp. e01539-18. DOI 10.1128/AEM.01539-18

Börner, T. et al., 2018. Discovery and development of novel glucanotransferases for healthier foods, In “Enzyme Engineering XXIV”, P. Monsan, Toulouse White Biotechnology, France; M. Remaud-Simeon, LISBP-INSA, University of Toulouse, France; Eds, ECI Symposium Series (2017).

Figueroa-Lozano, S. et al., 2018. Dietary N-glycans from bovine lactoferrin and TLR modulation. Molecular Nutrition and Food Research, 1 1, 62(2), p. 1700389. DOI 10.1002/mnfr.201700389

Gangoiti, J., Pijning, T. & Dijkhuizen, L., 2018. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnology Advances, 36(1), pp. 196-207. DOI 10.1016/j.biotechadv.2017.11.001

van Leeuwen, S. S. et al., 2018. Regional variations in human milk oligosaccharides in Vietnam suggest FucTx activity besides FucT2 and FucT3. Scientific Reports, 1 12.8(16790). DOI 10.1038/s41598-018-34882-x

Meng, X. et al., 2018. Biochemical characterization of two GH70 family 4,6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655. Food Chemistry, 1 7, Volume 253, pp. 236-246. DOI 10.1016/j.foodchem.2018.01.154

Meng, X. et al., 2018. Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Applied Microbiology and Biotechnology, 1 9, 102(18), pp. 7935-7950. DOI 10.1007/s00253-018-9236-6

Pham, H., Pijning, T., Dijkhuizen, L. & Van Leeuwen, S. S., 2018. Mutational analysis of the role of the glucansucrase Gtf180-ΔN active site residues in product and linkage specificity with lactose as acceptor substrate. Journal of Agricultural and Food Chemistry, 28 11, 66(47), pp. 12544-12554. DOI 10.1021/acs.jafc.8b04486

Pham, H. T., Dijkhuizen, L. & van Leeuwen, S. S., 2018. Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, 1 12, Volume 470, pp. 57-63. DOI 10.1016/j.carres.2018.10.003

te Poele, E., Dijkhuizen, L., Gerwig, G. & Kamerling, J., 2018. Methods for the enzymatic modification of steviol glycosides, modified steviol glycosides obtainable thereby, and the use thereof as sweeteners. Patent Application WO2016144175A1.

Te Poele, E. M. et al., 2018. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Scientific Reports, 1 12.8(1516). DOI 10.1038/s41598-018-19622-5

Yin, H., Dijkhuizen, L. & van Leeuwen, S. S., 2018. Synthesis of galacto-oligosaccharides derived from lactulose by wild-type and mutant β-galactosidase enzymes from Bacillus circulans ATCC 31382. Carbohydrate Research, 30 7, Volume 465, pp. 58-65. DOI 10.1016/j.carres.2018.06.009

Publications 2017

Bai, Y. et al., 2017. Crystal structure of 4,6-α-glucanotransferase supports diet-driven evolution of GH70 enzymes from α-amylases in oral bacteria. Structure, 7 2, 25(2), pp. 231-242. DOI 10.1016/j.str.2016.11.023

van Bueren, A. L., Mulder, M., Van Leeuwen, S. & Dijkhuizen, L., 2017. Prebiotic galactooligosaccharides activate mucin and pectic galactan utilization pathways in the human gut symbiont Bacteroides thetaiotaomicron. Scientific Reports, 16 1.7(40478). DOI 10.1038/srep40478

Ceniceros, A., Dijkhuizen, L. & Petrusma, M., 2017. Molecular characterization of a Rhodococcus jostii RHA1 γ-butyrolactone(-like) signalling molecule and its main biosynthesis gene gblA. Scientific Reports, 1 12.7(17743). DOI 10.1038/s41598-017-17853-6

Ceniceros, A., Dijkhuizen, L., Petrusma, M. & Medema, M. H., 2017. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics, 9 8.18(593). DOI 10.1186/s12864-017-3966-1

Devlamynck, T. N., 2017. Exploring the glucosylation potential of glucansucrases: From enzyme to product, University of Groningen

Frasch, H. J., van Leeuwen, S. S. & Dijkhuizen, L., 2017. Molecular and biochemical characteristics of the inulosucrase HugO from Streptomyces viridochromogenes DSM40736 (Tü494). Microbiology (United Kingdom), 1 7, 163(7), pp. 1030-1041. DOI 10.1099/mic.0.000493

Gangoiti, J. et al., 2017. Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. PLoS ONE, 1 4.12(4). DOI 10.1371/journal.pone.0172622

Gangoiti, J., Meng, X., van Bueren, A. L. & Dijkhuizen, L., 2017. Draft genome sequence of Lactobacillus reuteri 121, a source of α-glucan and β-fructan exopolysaccharides. Genome Announcements, 5(10). DOI 10.1128/genomeA.01691-16

Gangoiti, J. et al., 2017. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Scientific Reports, 6 1.7(39761). DOI 10.1038/srep39761

Gangoiti, J. et al., 2017. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB. Scientific Reports, 1 12.7(9947). DOI 10.1038/s41598-017-07190-z

Gerwig, G. J., te Poele, E. M., Dijkhuizen, L. & Kamerling, J. P., 2017. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydrate Research, Volume 440-441, pp. 51-62. DOI 10.1016/j.carres.2017.01.008

Meng, X. et al., 2017. Characterization of the glucansucrase Gtf180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chemistry, 15 2, Volume 217, pp. 81-90. DOI 10.1016/j.foodchem.2016.08.087

Montersino, S. et al., 2017. 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 contains a phosphatidylinositol cofactor. Frontiers in Microbiology, 16 6.8(1110). DOI 10.3389/fmicb.2017.01110

Pham, H. T., Dijkhuizen, L. & van Leeuwen, S. S., 2017. Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydrate Research, Volume 449, pp. 59-64. DOI 10.1016/j.carres.2017.07.002

te Poele, E. M. et al., 2017. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri. Applied Microbiology and Biotechnology, 1 6, 101(11), pp. 4495-4505. DOI 10.1007/s00253-017-8190-z

Sarian, F. D. et al., 2017. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Scientific Reports, 13 3.7(44230). DOI 10.1038/srep44230

Valk, V., van der Kaaij, R. M. v. d. & Dijkhuizen, L., 2017. The evolutionary origin and possible functional roles of FNIII domains in two Microbacterium aurum B8.A granular starch degrading enzymes, and in other carbohydrate acting enzymes. Amylase, 14 2, 1(1), pp. 1-11. DOI 10.1515/amylase-2017-0001

Yin, H., Bultema, J. B., Dijkhuizen, L. & van Leeuwen, S. S., 2017. Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chemistry, 15 6, Volume 225, pp. 230-238. DOI 10.1016/j.foodchem.2017.01.030

Yin, H., 2017. Biochemical characterization of β-galactosidases and engineering of their product specificity, University of Groningen.

Yin, H. et al., 2017. Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382. Biochemistry, 20 6, 56(24), pp. 3109-3118. DOI 10.1021/acs.biochem.7b00207

Yin, H. et al., 2017. Engineering of the Bacillus circulans β-galactosidase product specificity. Biochemistry, 7 2, 56(5), pp. 704-711. DOI 10.1021/acs.biochem.7b00032

Publications 2016

Bai, Y. et al., 2016. Lactobacillus reuteri strains convert starch and maltodextrins into homoexopolysaccharides using an extracellular and cell-associated 4,6-α-glucanotransferase. Journal of Agricultural and Food Chemistry, 27 4, 64(14), pp. 2941-2952. DOI 10.1021/acs.jafc.6b00714

Bai, Y. et al., 2016. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Carbohydrate Polymers, 20 10, Volume 151, pp. 29-39. DOI 10.1016/j.carbpol.2016.05.048

Devlamynck, T. et al., 2016. Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Applied Microbiology and Biotechnology, 1 9, 100(17), pp. 7529-7539. DOI 10.1007/s00253-016-7476-x

Dobruchowska, J. M. et al., 2016. Modification of linear (β1→3)-linked glucooligosaccharides with a novel recombinant β-glucosyltransferase (trans-β-glucosidase) enzyme from Bradyrhizobium diazoefficiens. Glycobiology, 26(11), pp. 1157-1170. DOI 10.1093/glycob/cww074

Gangoiti, J., Pijning, T. & Dijkhuizen, L., 2016. The Exiguobacterium sibiricum 255-15 GtfC enzyme represents a novel glycoside hydrolase 70 subfamily of 4,6-α-glucanotransferase enzymes. Applied and Environmental Microbiology, 82(2), pp. 756-766. DOI10.1128/AEM.03420-15

Gangoiti, J., Van Leeuwen, S. S., Vafiadi, C. & Dijkhuizen, L., 2016. The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochimica et Biophysica Acta – General Subjects, 1 6, 1860(6), pp. 1224-1236. DOI 10.1016/j.bbagen.2016.02.005

Gerwig, G. J., te Poele, E. M., Dijkhuizen, L. & Kamerling, J. P., 2016. Stevia glycosides: chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality. In: D. C. Baker, ed. Advances in Carbohydrate Chemistry and Biochemistry. s.l.:Academic Press, pp. 1-72. DOI 10.1016/bs.accb.2016.05.001

van Leeuwen, S. S., Kuipers, B. J., Dijkhuizen, L. & Kamerling, J. P., 2016. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydrate Research, 29 4, Volume 425, pp. 48-58. DOI 10.1016/j.carres.2016.03.006

Meng, X. et al., 2016. Structural determinants of alternating (α1→4) and (α1→6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Scientific Reports, 17 10.6(35261). DOI 0.1038/srep35261

Meng, X. et al., 2016. Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cellular and Molecular Life Sciences, 73(14), pp. 2681-706. DOI 10.1007/s00018-016-2245-7

Meng, X. et al., 2016. Synthesis of new hyperbranched α-glucans from sucrose by Lactobacillus reuteri 180 glucansucrase mutant. Journal of Agricultural and Food Chemistry, 20 1, 64(2), pp. 433-442. DOI 10.1021/acs.jafc.5b05161

Te Poele, E. M., Grijpstra, P., Van Leeuwen, S. S. & Dijkhuizen, L., 2016. Glucosylation of catechol with the GtfA glucansucrase enzyme from Lactobacillus reuteri and sucrose as donor substrate. Bioconjugate Chemistry, 20 4, 27(4), pp. 937-946. DOI 10.1021/acs.bioconjchem.6b00018

te Poele, E. M., Dijkhuizen, L., Gerwig, G. J. & Kamerling, J. P., 2016. Methods for the enzymatic modification of steviol glycosides, modified steviol glycosides obtainable thereby, and the use thereof as sweeteners. Patent application WO 2016/144175 A1.

Valk, V., Lammerts van Bueren, A., van der Kaaij, R. M. & Dijkhuizen, L., 2016. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes. FEBS Journal, 1 6.pp. 2354-2368. DOI 10.1111/febs.13745

Valk, V., Van Der Kaaij, R. M. & Dijkhuizen, L., 2016. Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13-42 with an unusual, multi-domain organization. Scientific Reports, 3 11.6(36100). DOI 10.1038/srep36100

Publications 2015

Aalbers, F. et al., 2015. Structural and functional characterization of a novel family GH115 4-O-methyl-α-glucuronidase with specificity for decorated arabinogalactans. Journal of Molecular Biology, 4 12, 427(24), pp. 3935-3946. DOI 10.1016/j.jmb.2015.07.006

Bai, Y. et al., 2015. Characterization of the 4,6-α-glucanotransferase GtfB enzyme of Lactobacillus reuteri 121 isolated from inclusion bodies. BMC Biotechnology, 9 6.15(49). DOI 10.1186/s12896-015-0163-7

Bai, Y. et al., 2015. Biochemical characterization of the Lactobacillus reuteri glycoside hydrolase family 70 GtfB type of 4,6-α-glucanotransferase enzymes that synthesize soluble dietary starch fibers. Applied and Environmental Microbiology, 81(20), pp. 7223-7232. DOI 10.1128/AEM.01860-15

van Bueren, A. L., Saraf, A., Martens, E. C. & Dijkhuizen, L., 2015. Differential metabolism of exopolysaccharides from probiotic lactobacilli by the human gut symbiont Bacteroides thetaiotaomicron. Applied and Environmental Microbiology, 81(12), pp. 3973-3983. DOI 10.1128/AEM.00149-15

Meng, X. et al., 2015. Characterization of the functional roles of amino acid residues in acceptor-binding subsite +1 in the active site of the glucansucrase Gtf180 from lactobacillus reuteri 180. Journal of Biological Chemistry, 11 12, 290(50), pp. 30131-30141. DOI 10.1074/jbc.M115.687558

Meng, X., 2015. Mutational and biochemical analysis of Lactobacillus reuteri glucansucrase enzymes, University of Groningen

Meng, X. et al., 2015. Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohydrate Research, 23 9, Volume 414, pp. 85-92. DOI 10.1016/j.carres.2015.07.011

Meng, X. et al., 2015. Truncation of domain V of the multidomain glucansucrase GTF180 of Lactobacillus reuteri 180 heavily impairs its polysaccharide-synthesizing ability. Applied Microbiology and Biotechnology, 26 7, 99(14), pp. 5885-5894. DOI 10.1007/s00253-014-6361-8

van Munster, J. M. et al., 2015. Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. Applied Microbiology and Biotechnology, 99(5). DOI 10.1007/s00253-014-6062-3

van Munster, J. M. et al., 2015. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydrate Research, 30 4, Volume 407, pp. 73-78. DOI 10.1016/j.carres.2015.01.014

van Munster, J. M. et al., 2015. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ΔbrlA and ΔflbA. PLoS ONE, 28 1.10(1). DOI 10.1371/journal.pone.0116269

Paul, C. J. et al., 2015. A GH57 4-α-glucanotransferase of hyperthermophilic origin with potential for alkyl glycoside production. Applied Microbiology and Biotechnology, 18 9, 99(17), pp. 7101-7113. DOI 10.1007/s00253-015-6435-2

Valk, V. et al., 2015. Degradation of granular starch by the bacterium Microbacterium aurum strain B8.A involves a modular α-amylase enzyme system with FNIII and CBM25 domains. Applied and Environmental Microbiology, 81(19), pp. 6610-6620. DOI 10.1128/AEM.01029-15

Venkataraman, H. et al., 2015. Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme. Applied Microbiology and Biotechnology, 18 6, 99(11), pp. 4713-4721. DOI 10.1007/s00253-014-6281-7

Wilbrink, M. H. et al., 2015. Enzymatic decoration of prebiotic galacto-oligosaccharides (Vivinal GOS) with sialic acid using Trypanosoma cruzi trans -sialidase and two bovine sialoglycoconjugates as donor substrates. Journal of Agricultural and Food Chemistry, 1 7, 63(25), pp. 5976-5984. DOI 10.1021/acs.jafc.5b01505

Publications 2014

Bultema, J. B., Kuipers, B. J. & Dijkhuizen, L., 2014. Biochemical characterization of mutants in the active site residues of the β-galactosidase enzyme of Bacillus circulans ATCC 31382. FEBS Open Bio, 1 12, Volume 4, pp. 1015-1020.

Leemhuis, H. et al., 2014. Isomalto/malto-polysaccharide, a novel soluble dietary fiber made via enzymatic conversion of starch. Journal of Agricultural and Food Chemistry, 10 12, 62(49), pp. 12034-12044. DOI 10.1021/jf503970a

Van Leeuwen, S. S., Kuipers, B. J., Dijkhuizen, L. & Kamerling, J. P., 2014. 1H NMR analysis of the lactose/β-galactosidase-derived galacto-oligosaccharide components of Vivinal® GOS up to DP5. Carbohydrate Research, 5 12, Volume 400, pp. 59-73. DOI 10.1016/j.carres.2014.08.012

van Leeuwen, S. S., Kuipers, B. J., Dijkhuizen, L. & Kamerling, J. P., 2014. Development of a 1H NMR structural-reporter-group concept for the analysis of prebiotic galacto-oligosaccharides of the [β-d-Galp-(1→x)]n-d-Glcp type. Carbohydrate Research, 5 12, Volume 400, pp. 54-58. DOI 10.1016/j.carres.2014.08.011

van Leeuwen, S. S. et al., 2014. Rapid milk group classification by 1H NMR analysis of Le and H epitopes in human milk oligosaccharide donor samples. Glycobiology, 24(8), pp. 728-739. DOI 10.1093/glycob/cwu036

Meng, X. et al., 2014. Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180. Journal of Biological Chemistry, 21 11, 289(47), pp. 32773-32782. DOI 10.1074/jbc.M114.602524

Petrusma, M., Van Der Geize, R. & Dijkhuizen, L., 2014. 3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. s.l.:Kluwer Academic Publishers. DOI 10.1007/s10482-014-0188-2

Pijning, T. et al., 2014. Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180. FEBS Journal, 281(9), pp. 2159-2171. DOI 10.1111/febs.12769

Wilbrink, M. H. et al., 2014. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide asthe donor substrate. Applied and Environmental Microbiology, 80(19), pp. 5984-5991. DOI 10.1128/AEM.01465-14

Publications 2013

Dobruchowska, J. M. et al., 2013. Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology, 9, 23(9), pp. 1084-1096. DOI 10.1093/glycob/cwt048

Leemhuis, H. et al., 2013. 4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Applied Microbiology and Biotechnology, 1, 97(1), pp. 181-193. DOI 10.1007/s00253-012-3943-1

Leemhuis, H. et al., 2013. Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Journal of Biotechnology, 1, 163(2), pp. 250-272. DOI 10.1016/j.jbiotec.2012.06.037

Li, B. et al., 2013. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus. Carbohydrate Polymers, 2 1, 91(1), pp. 314-321. DOI 10.1016/j.carbpol.2012.08.045

Timm, M. et al., 2013. An unconventional glycosyl transfer reaction: Glucansucrase GtfA functions as an allosyltransferase enzyme. ChemBioChem, 12, 14(18), pp. 2423-2426. DOI 10.1002/cbic.201300392

Publications 2012

Anwar, M. A. et al., 2012. The role of conserved inulosucrase residues in the reaction and product specificity of Lactobacillus reuteri inulosucrase. FEBS Journal, 10, 279(19), pp. 3612-3621. DOI 10.1111/j.1742-4658.2012.08721.x

Desmet, T. et al., 2012. Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chemistry – A European Journal, 27 8, 18(35), pp. 10786-10801. DOI 10.1002/chem.201103069

Dijkhuizen, L. et al., 2012. Glucooligosaccharides comprising (alpha 1-4) and (alpha 1-6) glycosidic bonds, use thereof, and methods for providing them. Patent application US 2012/0165290 A1.

Dobruchowska, J. M. et al., 2012. Structural characterization of linear isomalto-/malto-oligomer products synthesized by the novel GtfB 4,6 α-glucanotransferase enzyme from Lactobacillus reuteri 121. Glycobiology, 4, 22(4), pp. 517-528. DOI 10.1093/glycob/cwr167

van Leeuwen, S. S. et al., 2012. N -and O -glycosylation of a commercial bovine whey protein product. Journal of Agricultural and Food Chemistry, 26 12, 60(51), pp. 12553-12564. DOI 10.1021/jf304000b

van Leeuwen, S. S. et al., 2012. Use of Wisteria floribunda agglutinin affinity chromatography in the structural analysis of the bovine lactoferrin N-linked glycosylation. Biochimica et Biophysica Acta – General Subjects, 9, 1820(9), pp. 1444-1455. DOI 10.1016/j.bbagen.2011.12.014

van Munster, J. M., van der Kaaij, R. M., Dijkhuizen, L. & van der Maarel, M. J., 2012. Biochemical characterization of Aspergillus niger Cfci, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology (United Kingdom), 1 8, 158(8), pp. 2168-2179. DOI 10.1099/mic.0.054650-0

van Oosterwijk, N. et al., 2012. Structure and catalytic mechanism of 3-ketosteroid-Δ4-(5α)- dehydrogenase from Rhodococcus jostii RHA1 genome. Journal of Biological Chemistry, 7 9, 287(37), pp. 30975-30983. DOI 10.1074/jbc.M112.374306

Petrusma, M., Dijkhuizen, L. & van der Geize, R., 2012. Structural features in the KshA terminal oxygenase protein that determine substrate preference of 3-ketosteroid 9α-hydroxylase enzymes. Journal of Bacteriology, 1, 194(1), pp. 115-121. DOI 10.1128/JB.05838-11

Pijning, T. et al., 2012. Structure of the α-1,6/α-1,4-specific glucansucrase GtfA from Lactobacillus reuteri 121. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 12, 68(12), pp. 1448-1454. DOI 10.1107/S1744309112044168

Sarian, F. D. et al., 2012. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Applied Microbiology and Biotechnology, 1, 93(2), pp. 645-654. DOI 10.1007/s00253-011-3436-7

Wilbrink, M. H., van der Geize, R. & Dijkhuizen, L., 2012. Molecular characterization of ltp3 and ltp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269. Microbiology (United Kingdom), 1 12, 158(12), pp. 3054-3062. DOI 10.1099/mic.0.059501-0

Publications 2011

van der Geize, R. et al., 2011. The steroid catabolic pathway of the intracellular pathogen rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathogens, 8.7(8). DOI 10.1371/journal.ppat.1002181

Kralj, S. et al., 2011. 4,6-α-glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Applied and Environmental Microbiology, 11, 77(22), pp. 8154-8163. DOI 10.1128/AEM.05735-11

van Oosterwijk, N. et al., 2011. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3 – Ketosteroid 4-(5)-dehydrogenase from Rhodococcus jostii RHA1. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 10, 67(10), pp. 1269-1273. DOI 10.1107/S1744309111028727

Palomo, M. et al., 2011. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: Crystal structure, mechanism of action, and products formed. Journal of Biological Chemistry, 4 2, 286(5), pp. 3520-3530. DOI 10.1074/jbc.M110.179515

Petrusma, M., Hessels, G., Dijkhuizen, L. & van der Geize, R., 2011. Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. Journal of Bacteriology, 8, 193(15), pp. 3931-3940. DOI 10.1128/JB.00274-11

Wilbrink, M. H., Petrusma, M., Dijkhuizen, L. & van der Geize, R., 2011. FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme a ligase essential for degradation of C-24 branched sterol side chains. Applied and Environmental Microbiology, 7, 77(13), pp. 4455-4464. DOI 10.1128/AEM.00380-11

Publications 2010

Anwar, M. A. et al., 2010. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: Characterization of three novel fructansucrase enzymes and their fructan products. Microbiology, 4, 156(4), pp. 1264-1274. DOI 10.1099/mic.0.036616-0

Leemhuis, H., Kelly, R. M. & Dijkhuizen, L., 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology and Biotechnology, 1, 85(4), pp. 823-835. DOI 10.1007/s00253-009-2221-3

Vujičić-Žagar, A. et al., 2010. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. PNAS, 107(50), p. 21406–21411. DOI 10.1073/pnas.1007531107/-/DCSupplemental

Publications 2009

van Leeuwen, S. S. et al., 2009. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180. Biomacromolecules, 9 3, 10(3), pp. 580-588. DOI 10.1021/bm801240r

Publications 2008

van Leeuwen, S. S. et al., 2008. Structural analysis of the α-d-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydrate Research, 19 5, 343(7), pp. 1237-1250. DOI 10.1016/j.carres.2008.01.042

Publications 2006

Ozimek, L. K., Kralj, S., van der Maarel, M. J. & Dijhuizen, L., 2006. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology, 4, 152(4), pp. 1187-1196. DOI 10.1099/mic.0.28484-0

Publications 2005

Kralj, S. et al., 2005. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Applied and Environmental Microbiology, 7, 71(7), pp. 3942-3950. DOI 10.1128/AEM.71.7.3942-3950.2005

Publications 2004

van Hijum, S. A. F. T., 2004. Fructosyltransferases of Lactobacillus reuteri: Characterization of genes, enzymes, and fructan polymers., University of Groningen

 

Recent Posts

Archives

Categories